If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=-8x^2+80x-192
We move all terms to the left:
x-(-8x^2+80x-192)=0
We get rid of parentheses
8x^2-80x+x+192=0
We add all the numbers together, and all the variables
8x^2-79x+192=0
a = 8; b = -79; c = +192;
Δ = b2-4ac
Δ = -792-4·8·192
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-\sqrt{97}}{2*8}=\frac{79-\sqrt{97}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+\sqrt{97}}{2*8}=\frac{79+\sqrt{97}}{16} $
| 4y⁰+31⁰=5y⁰ | | x÷3+5=5 | | 4j-71=24 | | 43/5=x+1 | | -15x-92=28 | | x/4.7=3.8 | | 162+x/18=x+24 | | 3–12d=32d+4–d | | 8v+6v=16 | | −3−7x−5=9×=4x=2 | | 39=15x+241 | | n+n+5=58.75 | | -3b-5=13 | | 39=15a+241 | | X^2+6x-44=-4 | | 5y–19=6 | | –2b+4=–12 | | 3h=–3+2h | | 2x55=(2x)+(2x) | | X/5a=2 | | -7(w-9)=21 | | 9x=-49÷13 | | –10+9q=10q | | 8a^2-6a+19=0 | | 4(x)-25=96 | | 0.8x-12=0.3x=2 | | m=0.36-0/3-0 | | m=0.36-0 | | 18x+6=132° | | 1/3(n-2)=n+1 | | -1/8(-3-9c)=-11 | | 7(9^x)=55.68 |